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Abstract. The cubic T⊗ t Jahn–Teller (JT) system has been investigated extensively prev-
iously. However, orbital triplet systems coupled to more than one t-type mode, as will occur for
JT ions in real crystals, have received less attention. The current authors have previously derived
expressions for symmetry-adapted vibronic states in the T⊗ 2t2 JT system using their unitary
shift transformation method. These results are now used to calculate the first- and second-order
vibronic reduction factors for spin–orbit coupling for this JT system. A discussion is given on
whether is appropriate to formulate this problem with two strongly coupled modes in terms of
one effective mode. Also, the results obtained when the coupling to one mode is weak and the
other mode is strong are compared to the analogous results for the simpler T⊗ t system with an
additional uncoupled mode. Conclusions are drawn as to how first- and second-order reduction
factors for the full multi-mode T⊗ nt2 JT system could be formulated using this approach.

1. Introduction

Jahn–Teller (JT) ions in molecular and crystalline environments are most commonly
modelled using effective Hamiltonians acting on electronic states. These Hamiltonians
contain parameters, known as first- and second-order reduction factors, which multiply
electronic operators. They can be calculated by a comparison of the matrix elements of
the actual Hamiltonian connecting the real vibronic states of the JT ion and the matrix
elements of the effective Hamiltonian connecting the electronic states. In strongly coupled
JT systems, the first-order terms may be quenched with the result that the second-order
terms have a dominant effect in determining the behaviour of the system. Consequently it
is important to be able to calculate both first- and second-order reduction factors. Details
of these basic ideas can be found in the books by Perlin and Wagner [1] and Bersuker and
Polinger [2].

One JT system that has received much attention is that of an orbital triplet T coupled
to a single t2 mode of vibration (the T⊗ t2 JT effect). This system possesses four minima
in the potential energy surface. In the strong-coupling limit, states localized in these wells
are good states of the system as a whole. However, in finite coupling, the system tunnels
between these wells, resulting in a triplet ground state and a singlet tunnelling level. In
many previous papers, expressions for both first- and second-order JT reduction factors
have been derived. In particular, two of the current authors [3] obtained expressions for
the first-order reduction factors, and also gave simplified expressions for the second-order
factors in which tunnelling between the excited states was neglected. Later, excited states
were derived which have the correct symmetry properties for the problem as a whole, and
hence describe the finite-coupling case in which tunnelling between the wells is allowed
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[4]. Consequently, improved expressions for the second-order factors were obtained [5].
Numerical calculations of the reduction factors have also been undertaken. We cite here the
work of O’Brien [6] who calculated first- and second-order reduction factors for spin–orbit
coupling for the T⊗t JT system over a range of coupling strengths using basis states defined
from a weak-coupling basis.

In real systems, it may be necessary to include JT coupling to more than one active
mode of the same symmetry. Although it may be possible to interpret the vibronic structure
arising from such systems in terms of a single-mode model [7], such approaches are often
inapplicable (as demonstrated in reference [8], for example) and multiple couplings must
be included. This is particularly true where modes of very different frequencies must be
included, such as optical and acoustic phonon modes. For example, the ZnS:Fe2+ system has
been modelled including coupling to two active e modes [9]. The ground state of the singly
charged fullerene molecule C−60 is an icosahedral JT problem of T1u⊗ 8hg symmetry. It is
known to be important to include the effects of all eight modes [10–13]. The frequencies of
multiple modes have been calculated [14–16] and measured experimentally (see reference
[17] and references in [14, 15, 18]) for various charge states of pure C60 and compounds
such as TDAE–C60 and alkali-intercalated C60. The various coupling constants have also
been estimated ([15], [18] and references therein). JT ions in crystals (such as magnetic
impurities in the cubic III–V semiconductors) will be coupled to an infinite number of modes
covering a whole spectrum of frequencies. From a theoretical point of view, it is therefore
important to be able to develop theoretical models in which the couplings to multiple modes
is included.

Multi-mode JT problems in cubic symmetry have been the subject of much theoretical
work in the last 30 years. The T⊗ e case can be solved exactly. Apart from this, most
of this effort has centred on the E⊗ e problem (see reference [2] for a detailed discussion
and original references, and reference [19] for a recent numerical investigation). However,
very little analytical or numerical work has been carried out on other multi-mode problems
due to their inherently complicated nature. If JT systems containing distinct minima rather
than troughs are to be considered, the simplest non-trivial system to investigate in terms
of the smallest number of free parameters is that of T⊗ t. Recently [20], a phonon Green
functions approach was used to obtain expressions for the tunnelling splitting energy gap
and to investigate the effects of relaxation in the multi-mode T⊗ t2 problem. This follows
an approach proposed originally for the single-mode case [21]. However, this approach
does not intrinsically yield expressions for the states (either ground or excited), and hence
cannot readily be used to calculate the matrix elements necessary for evaluation of reduction
factors. It is also so far limited to the harmonic approximation, in which anisotropy in the
wells is neglected.

In this paper, we will investigate reduction factors in the T⊗2t2 JT system analytically.
This is a first step in solving the full multi-mode T⊗ t2 problem, and also illustrates
how problems involving couplings to a multiple but finite number of modes (such as the
icosahedral T1u ⊗ 8hg JT system) could be formulated. A previous paper [22] derived
vibronic symmetry-adapted excited states and their associated energies for this system.
This paper will summarize the results for the states obtained in this earlier paper, and then
present new details for the evaluation of the first- and second-order reduction factors. The
strong- and weak-coupling limits of the results will be investigated. It is already known that
for the two-mode problem and in the special case in which the frequencies of the two modes
are equal, a transformation can be made to the original Hamiltonian that allows the problem
to be described in terms of one coupled and one uncoupled mode [22, 23]. This is very
much like the privileged mode of the E⊗ e JT system. The appropriateness of describing
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the reduction factors in terms of an effective mode when the frequencies are not equal will
be discussed. Finally, we will give a discussion of how the results can be extended beyond
two modes, and how anisotropy could be incorporated into the problem.

2. Background theory

Using a tetrahedral cluster model, the JT Hamiltonian for a T1(l = 1) ion coupled linearly
to two t2-type active modes of vibration may be expressed in the form

H = 1

2

9∑
j=4

(
P 2
j

µ
+ µω2

j Q
2
j −
√

3VjQjτj

)
(1)

where theVj andωj are the linear vibronic coupling constants and frequencies (respectively)
for the two modes, which will be labelled ‘T’ and ‘2’. The symmetrized displacements of
the clusterQj are labelledQ4, Q5 andQ6 for the mode T andQ7, Q8 andQ9 for the mode
2, where the phonon excitation modes labelled 4 and 7 transform asyz, those labelled 5
and 8 transform aszx and those labelled 6 and 9 transform asxy. ThePj are the momenta
conjugate toQj andµ is the mass of one ligand. Theτj are orbital operators defined by
τ4 = τ7 = −(lylz + lzly) etc, using the orbital basis statesx, y andz.

The positions of potential energy wells inQ-space can be determined by introducing a
unitary transformation of the form

U = exp

(
i

9∑
j=4

αjPj

)
. (2)

This will displace the origin of the coordinateQj to (Qj − αjh̄) [24]. The parametersαj
can be fixed by minimizing the energy of that part of the transformed Hamiltonian which
does not contain phonon operators [24, 25]. This produces the well-known result of four
minima. These will be labelled by the indexk running from 1 to 4. The resulting orbital
states|X(k)0 〉 are defined as∣∣∣X(k)0

〉
= 1√

3

∣∣∣σ (k)4 x + σ (k)5 y + σ (k)6 z
〉

(3)

where

σ
(1)
4 = σ (1)5 = −σ (1)6 = 1 σ

(2)
4 = −σ (2)5 = σ (2)6 = 1

−σ (3)4 = σ (3)5 = σ (3)6 = 1 − σ (4)4 = −σ (4)5 = −σ (4)6 = 1.
(4)

These states associated with the wells in the transformed picture can be transformed back
to the original space by multiplying them by the operatorU (=Uk), after substitution of
the appropriate value for theαj . This results in states which are automatically vibronic
in nature. Adopting the same notation as previous papers, the states will be written in
the form |X(k)0 ; 4l5m6n7α8β9γ 〉, where 4l , for example, denotes the presence ofl ‘4’-type
phonon excitations.

The states associated with the wells are not appropriate to the system as a whole as they
do not allow for the necessary tunnelling between equivalent wells. In order to incorporate
the overall cubic symmetry present within the T1 ⊗ 2t2 JT system, projection operator
techniques can be used to obtain a set of approximate eigenstates [26]. This involves
constructing linear combinations of the states in the trigonal wells. The degeneracy of the
four ground states in the wells is lifted, producing a T1 triplet ground state and an A2 singlet
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excited state. Kirket al [22] gave details outlining the form of all states, their associated
normalizing factors and their energies. The resultant states were written in the form

|9i(l,m, n, α, β, γ )〉 = Ni(l,m, n, α, β, γ ) |ϕi(l, m, n, α, β, γ )〉 (5)

for i = 1 to 30, where the states|ϕi〉 can be found in tables 1 and 2 of reference [22]. (Note
that the A2 states (20 to 25) and the A1 states (26 to 30) in table 1 of this reference should
be written as

|E′(l, m, n, α, β, γ )〉 ± |E′(m, l, n, β, α, γ )〉 + (−1)l+n+α+γ [|E′(m, n, l, β, γ, α)〉
± |E′(n,m, l, γ, β, α)〉] + (−1)m+n+β+γ [|E′(n, l,m, γ, α, β)〉
± |E′(l, n,m, α, γ, β)〉] (6)

respectively.) The normalization factorsNi and the energies of the statesEi(l,m, n, α, β, γ )
can be determined by evaluating overlaps and matrix elements connecting the electronic
states using techniques described in reference [22].

3. First-order reduction factors

In this paper, first-order JT reduction factors will be calculated for spin–orbit coupling. As
the orbital part of this perturbation transforms as T1, reduction factors for this perturbation
are labelledK(1)

0γi0γj
(T1). Using the usual definition for first-order reduction factors, this is

given by

K
(1)
0γi0γj

(T1) =
〈
90γi

∣∣ λl · s ∣∣90γj 〉〈
ψ0γi

∣∣ λl · s ∣∣ψ0γj 〉 (7)

where
∣∣90γi 〉 represent the vibronic ground states and

∣∣ψ0γi 〉 represent the electronic states.
This reduction factor may be evaluated by using the orbital operatorlx alone. Thus

K
(1)
Ty ′Tz′(T1) =

〈
Ty ′

∣∣ lx ∣∣Tz′〉
〈y| lx |z〉 (8)

which gives

K
(1)
Ty ′Tz′(T1) = 16

3
N2

T2tS2t (9)

where

NT2t = 1

2
√

1+ S2t/3
(10)

and

S2t = exp

(
−16

9

∑
i

(
Ki

h̄ωi

)2)
(i = T, 2). (11)

where

Ki =
√

3h̄

8µωi
Vi. (12)

It can be seen that the expression for the reduction factor is identical to that for the
single-mode T⊗ t2 problem except that the term(KT/h̄ωT)

2 has been replaced by the sum∑
i (Ki/h̄ωi)

2. The variation of the reduction factor as a function ofKeff /h̄ωT, where
Keff = KT

√
1+ η′2 with η′ = (K2/KT)/(ω2/ωT), is thus identical to that ofK t(T1) in
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figure 1 of reference [3] for the single-mode case. This allows the value of the reduction
factor to be determined for any given coupling strengths and frequencies from the single-
mode results. Clearly, an equivalent result will hold for the full multi-mode problem. We
note that in the case of the ground-state energies with non-equal frequencies, the single-
mode and two-mode expressions are equivalent if(K2

T/h̄ωT) is replaced by
∑

i (K
2
i /h̄ωi)

[22], which differs by a factor ¯hω from the reduction factor result. Although this is fairly
obvious because the quantities to be evaluated in the energy and reduction factor calculations
have different dimensions, it does show that the whole JT problem cannot be treated simply
in terms of one effective mode when the frequencies are different. We note that when the
frequencies are equal, the results for both the energies and first-order reduction factors are
consistent with the transformation of the Hamiltonian into an effective mode with coupling
strength

Veff = VT

√
(1+ [V2/VT]2). (13)

4. Second-order reduction factors

4.1. The calculation

Second-order reduction factors arise from the non-zero matrix elements of an electronic
perturbationV connecting the vibronic ground and vibronic excited states. For the case
of spin–orbit coupling, they may be obtained by comparing the matrix elements ofλl · s
in second order using the symmetry-adapted states constructed in reference [22] with those
of the spin–orbit coupling within the electronic basis. Thus the second-order perturbation
operator takes the form

V = −
∑
n

P0λl · sPnλl · sP0

En − E0
(14)

whereP0 is the quantum mechanical projection operator for the vibronic ground states with
energyE0 andPn is the projection operator for the vibronic excited states with energyEn. It
is possible to write down the effective Hamiltonian in many different forms. References [3]
and [27] give some equivalencies between some formalisms. The form defined by O’Brien
[6] was

Heff = λ2

[
Al · s+ 2

3
BEE(l)E(S)+ 2

3
BTT (l)T (S)+ Cl(l + 1)S(S + 1)

]
(15)

whereA,BE, BT andC are the coefficients of the terms transforming as T1, E, T2 and A1

respectively and the tensor operators are given by

E(l) = 1
2

[
3l2z − l(l + 1)

]
T (l) =

√
3
2(lylz + lzly) etc. (16)

This form displays clearly the symmetry components separately. The factorsA,BE, BT

andC may be related to the factorsK(2)
M (0k × 0l) defined in reference [27] from a more

general symmetry point of view, where in this case0k = 0l = T1 for spin–orbit coupling
and0 = T1 for a T1 ion. Thus

K
(2)
A1
(T1× T1) = 3C K

(2)
E (T1× T1) = BE

K
(2)
T1
(T1× T1) = −2A K

(2)
T2
(T1× T1) = BT

(17)

It is necessary to evaluate the matrix elements of the perturbationV connecting the vibronic
ground state and all excited states. However, spin–orbit coupling does not couple the states
of A1 and A2 symmetries to the T1 ground state and they may thus be excluded from the
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calculations. It is found that the required matrix elements are analogous to those given in
equation (4.1) of reference [5], extended to include the extra mode. For example,〈
Tx ′(l, m, n, α, β, γ )

∣∣ l · s ∣∣Tz′(0, 0, 0, 0, 0, 0)
〉

= 4iB(l,m, n, α, β, γ )(−1)m+β
[
δ0nδ0γ + (−1)n+γ δ0lδ0α

]
Sy (18)

where

B(l,m, n, α, β, γ ) = 2NN2tNi(l,m, n, α, β, γ )S2t

3
√
l!m!n!α!β!γ !

Y
(l+m+n)/2
T Y

(α+β+γ )/2
2 (19)

with

Yi = 16

9

(
Ki

h̄ωi

)2

(i = T, 2). (20)

These results can be seen to have the required property of being equivalent under interchange
of the labels{l, m, n} and{α, β, γ } for the two phonon modes. They can be used to calculate,
for example, the diagonal matrix elementVzz of l · s within the

∣∣Tz′〉 ground state and the
off-diagonal matrix elementVyz connecting the

∣∣Tz′〉 and the
∣∣Ty ′〉 ground states, namely

Vzz = −X2t
[
(GT1 +GT2)(S

2
x + S2

y )+ 2GES
2
z

]
(21)

and

Vyz = X2t
[
(GT1 −GT2)SzSy +GESySz

]
(22)

where

X2t = 16

3

S2
2t

(3+ S2t)
(23)

and

GE = 18


∞∑
l=0

l∑
n=0

∞∑
α=0

α∑
γ=0

excludingm=β=0

0E(l, 0, n, α,0, γ )+
∞∑
l=1

l∑
n=0

∞∑
α=1

α−1∑
γ=0

0E(l, 0, n, γ,0, α)


GT2 =

∞∑
l=0

∞∑
m=0

∞∑
α=0

∞∑
β=0

excludingm=β=0

0T2(l, m,0, α, β,0)

GT1 = 4(g1+ g2+ g4)+ g3

(24)

where

g1 =
∞∑
l=0

∞∑
α=0

excluding l=α=0

0T1(l, 0, 0, α,0, 0)

g2 =
∞∑
m=0

m∑
n=0

∞∑
β=0

β∑
γ=0

excludingm=β=0

0T1(0, m, n,0, β, γ )+
∞∑
m=1

m−1∑
n=0

∞∑
β=1

β−1∑
γ=0

0T1(0, m, n,0, γ, β)

g3 =
∞∑
l=0

∞∑
m=0

∞∑
α=0

∞∑
β=0

excludingm=β=0

0T1(l, m,0, α, β,0)

g4 =
∞∑
m=0

∞∑
β=0

excludingm=β=0

0T1(0, m,0, 0, β,0)

(25)
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with

0a(l,m, n, α, β, γ ) = N2
i (l, m, n, α, β, γ )Y

l+m+n
T Y

α+β+γ
2

l!m!n!α!β!γ !(Ea(l,m, n, α, β, γ )− E1(0, 0, 0, 0, 0, 0))
(26)

where appropriate values fori are chosen to correspond to the symmetrya.
The matrix elements obtained above can then be compared to those calculated within

the electronic manifold using an appropriate effective Hamiltonian, with the electronic states
|x〉, |y〉 and |z〉 as basis states. In the formalism of O’Brien [6], for example, the matrix
elementsV effzz andV effyz are given by

V effzz =
(

2C + 1

3
BE

)
(S2
x + S2

y )+
(

2C − 2

3
BE

)
S2
z (27)

and

V eff
yz =

(
−1

2
BT − A

)
SySz +

(
−1

2
BT + A

)
SzSy. (28)

ComparingVzz with V effzz andVyz with V effyz , we obtain

A = −X2t

2
(GE−GT1 +GT2) BE = X2t(2GE−GT1 −GT2)

BT = −X2t(GE+GT1 −GT2) C = −X2t

3
(GE+GT1 +GT2)

(29)

where the components of spin have been used as labels for comparing terms within a given
matrix element.

4.2. Discussion of results

It is a simple matter to evaluate numerically the above expressions for the reduction factors
for any given values of coupling strengths and frequencies. It is instructive to consider first
the results for the special caseωT = ω2 = ω, when it is known from the transformation of
the original Hamiltonian that the problem should reduce to one of a single mode. In our
case, however, there will be some small differences from the true effective-mode results
due to our choice of excited states. The projection operator method was used to produce
states of a given symmetry. However, this results in a larger set of states than is required
for a basis set; some states are linear combinations of other states. Therefore, it is necessary
to reduce the number of states written down to a basis set of the correct size. The choice
made is not unique. The restrictions on the indices necessary to prevent overcounting were
chosen such that the full set of states could be expressed in a simple and compact manner.
The advantage of this approach is that the calculations remain analytical until the last step
where the reduction factors are plotted. The disadvantage is that states of a given symmetry
are not necessarily orthogonal to others of the same symmetry. Furthermore, they do not
divide into states for a coupled and a decoupled mode. A fuller discussion of this point
was given in reference [22]. The same non-orthogonality problems mean that the results
obtained will not tend to the correct limit in weak coupling. A similar result was obtained
earlier for the single-mode problem [5], where it was found that a term in the sumGT1

remains finite at zero coupling. However, it is a relatively simple matter to correct this
problem and obtain the correct weak-coupling results by redefining one of the T1 states
containing one phonon so that it is orthogonal to the ground state [5].
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Figure 1. The two-mode second-order reduction factors (equation (29)) as functions ofKeff /h̄ω

for the equal-frequency case and withη = 0.01 and 1. In all cases, the reduction factors for
η = 0.01 have the smallest magnitude and forη = 1 have the largest magnitude for weak
coupling.

In order to investigate the effect of the excited-state problems, we have calculated the
second-order reduction factors as functions of the effective coupling strengthKeff /h̄ω,
where

Keff =
√
K2

T +K2
2

for various values of the ratioη = K2/KT. Figure 1 shows such plots forη = 0.01 and 1.0.
The results for intermediate values ofη lie between these results; the results forη = 1/3
and 1/2 lie approximately 1/3 and 2/3 of the way between the results for the two limiting
cases respectively. It is not necessary to consider values ofη greater than 1.0 because the
results for pairs of values ofη and 1/η should be equivalent for a given value ofKeff
(see below). For small values of the coupling strengths, it is only necessary to sum over
a few excitations for rapid convergence to occur. For larger values, more excitations are
needed for an acceptable level of convergence. It was found unnecessary to include more
than 40 excitations in any of the summations over the range of couplings displayed. The
plots show that the results are different for different values ofη. However, the differences
are much smaller than those caused by the weak-coupling non-orthogonality problem, and
quickly become negligible for effective coupling strengths greater than 1.

The results for very small (or large) values ofη must be the same as those for the
equivalent single-mode problem. However, in order to simplify the formulation of the
excited states in the two-mode problem, the set of E states used here is different to that
used previously in reference [28] for the calculation of the reduction factors for the single-
mode T⊗ t2 problem [5]. We have therefore calculated the single-mode reduction factors
using both the set of excited E states used previously and the set equivalent to that used for
the two-mode results here. It is found that there are small differences in the rates at which
the results tend to zero in the strong-coupling limit, especially for the reduction factorBE

which is most dependent upon contributions from the E states. This is shown in figure 2 for
results that have been corrected for weak coupling. (The results obtained using the previous
set of basis states are identical to those previously published assuming that the coupling
strength isKeff .) The differences should be considered as a limit on the accuracy of our
calculations.
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Figure 2. The two-mode second-order reduction factors as functions ofKeff /h̄ω for the equal-
frequency case and withη = 0.01 (solid lines), and the single-mode results obtained using the
current and previous sets of excited states, corrected for the weak-coupling limit (long-dashed
and short-dashed lines respectively).

We have found that the uncorrected two-mode results obtained forη = 0.01 are
indistinguishable from the single-mode results obtained using equivalent states and effective
coupling strengthKeff , for all coupling strengths. Figure 2 repeats the uncorrected results
for this case. From a comparison between the corrected and uncorrected single-mode
results, it is obvious how the correction to the two-mode calculations would alter the results.
Hence this additional modification is not included here in order to preserve the relatively
straightforward nature of the results.

When the frequencies are not equal, the two-mode results for the second-order reduction
factors are complicated functions of the coupling strengths. The only exceptions to this are

Figure 3. The two-mode second-order reduction factors as functions ofKeff /h̄ω for η = 1,
ωT = ω andω2 = ω (solid lines), 0.8ω (long-dashed lines) and 0.5ω (short-dashed lines).
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for η very small and very large, when one of the modes is effectively decoupled and hence
the results are the same as for the single-mode case. Away from these limits, it is not
possible to write down exact algebraic expressions in terms of an effective mode. It is
instructive to plot the reduction factors for non-equal frequencies in this case to see how
they differ from the equal-frequency results. We choose to consider the case whereη = 1.0,
which represents the case in which the couplings to the two modes are equivalent. These
results will show the largest deviation from the effective-mode results. Such results are
presented in figure 3 for the frequenciesωT = ω andω2 = ω, 0.8ω and 0.5ω. It can be
seen that the magnitudes of the reduction factors forω2 = 0.5ω are significantly larger
than those forη = 0.01 for moderate to weak coupling. The differences are considerably
greater than the differences in the equal-frequency results due to a non-orthogonal basis
set (figure 1), so the effect can be assumed to be real. The magnitudes of the reduction
factors are slightly reduced for strong coupling from the equal-frequency results, although
the difference is small. From this, we can conclude that for weakly and moderately coupled
JT systems, it is not possible to describe multi-mode problems in terms of an effective
mode unless the frequency bandwidth is small. However, for strongly coupled systems the
approximation may be valid.

The main difference between the algebraic form of the second-order reduction factor
results presented here and the equivalent single-mode results is that the functions0j have
been redefined with double summations to take account of the extra mode. The lower limits
in the sums ensure that all terms are included whilst preventing the0j from taking all
zero entries. On physical grounds, we expect the results obtained to be symmetric in the
two modes. The results given here have been written in a form that best illustrates this.
Consequently, they cannot be compared directly to the form quoted for the single-mode
results defined in equation (4.5) of reference [5]. However, it is a simple matter to show
that the expressions are indeed equivalent when either one of the modes is not present. This
confirms the numerical results obtained above.

It can be seen thatGT1 andGT2 are symmetric in the two modes when both modes are
present. (The second term ing2 is not obviously symmetric in its indices, but is symmetric
due to the form of0T1 itself.) However, the termGE is found to be non-symmetric. This
can be attributed to the fact that the manner in which the E states are written down is not
symmetric in the two modes. The set that we have used was derived systematically starting
from consideration of one mode and then adding in the necessary extra conditions to apply to
the two modes. Although it is systematic, it does not treat the two modes equally. Because
the E states contain many terms, it is not obvious which states are linear combinations of
other states. No problems arise for the T states because they have a much simpler form.
The T states obtained from the projection operator technique are either unique or differ from
other states obtained by a phase factor only. Although the results given here are not quite
symmetric in the two modes, the numerical differences are negligible. As mentioned above,
plots of the reduction factors againstKeff will be identical for pairs of values ofη and 1/η
when the results are symmetric. We have calculated the reduction factors forη = 2 and 3,
and find that the results are indistinguishable from the results forη = 1/2 and 1/3 on the
scale used in the figures.

5. Conclusion

This paper has used the vibronic symmetry-adapted excited states derived previously [5] for
the single-mode T⊗t2 problem to obtain expressions for first- and second-order JT reduction
factors in the T⊗2t2 JT system. The main idea behind this work and that of reference [22] is
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to formulate a first step towards a multi-mode model that can be applied to describe the real
JT effects experienced by impurities in crystals. Another potential application is in studies
of the singly charged C−60 state of the icosahedral fullerene molecule C60, which is known
to exhibit a T1u⊗ 8hg JT effect. Measurements indicate that the frequencies of the eight hg

modes are spread over a range of 5¯hω (references [14, 15, 17, 18] and references therein).
Therefore, it is not valid to make the approximation that all modes have the same frequency
and hence to treat the whole problem in terms of an effective mode. Thus an approach
such as that described here is necessary in order to describe properly the couplings to the
eight modes. The ideas developed in this paper can be used for the T1u⊗8hg system, using
results already developed for the single-mode T1u⊗ hg problem [29]. However, the details
of the calculations will be more complicated due to the icosahedral symmetry and higher
degeneracies involved. Hence it is sensible to develop a model for multiple couplings in
cubic T⊗ t problems before considering this system.

A full treatment of JT systems such as the T⊗ t one should include the effects of
anisotropy in the potential minima [30]. It would be possible to include such effects in the
calculations presented here. However, the inclusion of anisotropy results in expressions for
the states in the wells and their corresponding energies that are very much more complicated
than the isotropic results. This means that the results, particularly for the second-order
reduction factors, could not be expressed in simple analytical forms. Hence this has not
been considered in this paper.

It has already been found that, as far as the energies of the ground states are concerned,
it is possible to reformulate the general multi-mode problem in terms of one effective mode.
We have shown that this is also possible for the first-order reduction factors. However, the
effective coupling constant is different for the reduction factors compared to that for the
energies in the case when the frequencies are not equal. The results for the excited-state
energies have previously been found to be complicated functions of the coupling constants
and frequencies. They can only be formulated in terms of one effective mode when the
frequencies are equal (where an orthogonal transformation can be applied to reformulate
the initial problem in terms of one coupled mode only). The same has been found to be
true for the second-order reduction factors.

It is clearly easy to extend the expressions for the first-order reduction factors to ann-
mode multi-mode model by simply extending the sums over all active modes. The situation
for the second-order reduction factors is not so straightforward due to the more complex
nature of the sums. An added complication is that it will be necessary to obtain expressions
for the symmetry-adapted excited states that are symmetric in all of the equivalent phonon
modes considered. The problem of determining symmetric expressions for the symmetry-
adapted states is a non-trivial task and so remains a problem for future work.

We can conclude that although our results contain some inaccuracies due to the problem
of formulating an orthogonal set of symmetry-adapted excited states that is symmetric in both
modes, the discrepancies are small. Our results are useful for an analytical formulation of
the two-mode problem, and indicate how the multi-mode results can be expected to appear.
A derivation of a set of symmetric states is desirable if the results are to be extended to a
full multi-mode case.
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